

Assessment of Severity of Pulmonary Hypertension in Copd Patients with 2d Echo as a Diagnostic Tool

Dr. Viresh Mariholannanavar. Dr. Irfan K M

Kanachur Institute Of Medical Sciences, Mangalore, Karnataka Department of Respiratory Medicine, Kanachur Institute of Medical Sciences & Research Centre, Mangalore -

575018

Submitted: 01-11-2024 Accepted: 10-11-2024 _____

ABSTRACT:

Chronic obstructive pulmonary disease (COPD), a common preventable and treatable disease, is characterized by persistent airflow limitation that is usually progressive and associated with enhanced chronic inflammatory response in the airways and lung to noxious particles or gases.Cigarette smoking is a well known risk factor for COPD.Impaired endothelial function as a result of endothelial injury by cigarette smoke products and decreased endothelial expression of nitric oxide, prostacyclin synthase are being proposed as the initial mechanism in the natural pathway of pulmonary hypertension in COPD¹². Measuring pulmonary artery pressure by right heart catheterization has been the gold standard technique. Due to invasive nature of the procedure and associated complications, it is not routinely performed.The estimate of pulmonary artery pressure by echocardiography has been shown to have goodcorrelation to that of invasive measurement. Echocardiography provides a rapid, noninvasive, portable, and accurate method to evaluate the cardiac changes secondary to severe COPD.

I. **INTRODUCTION:**

Chronic obstructive pulmonary disease (COPD), a common preventable and treatable disease, is characterised by persistent airflow limitation that is usually progressive and associated with enhanced chronic inflammatory response in the airways and lung to noxious particles or gases. Exacerbations and comorbidities contribute to

overall severity in individual Patients. Emphysema, a pathological term often used incorrectly to describe COPD. It specifies one of the structural abnormality(alveolar wall destruction) occurring in COPD and does not emphasis on the changes occurring in airways and pulmonary vasculature. Chronic bronchitis is a clinical diagnosis described as production of sputum for minimum of three months in 2 successive years. The airflow limitation may follow or precede it, so spirometry can be normal.

AIMS AND OBJECTIVES: II.

1. To assess the cardiovascular changes secondary to COPD by echocardiography.

2. To evaluate pulmonary hypertension secondary to COPD severity as per GOLD guidelines by echocardiography

MATERIALS AND III. **METHODOLOGY**

Type of study - Prospective cross sectional study Place - Kanachur institute of medical sciences, MANGALORE

Duration - Over a period of 4 months (May 2023 -August 2023)

Sample Size - 40 COPD patients

Selection Criteria - Patients diagnosed with COPD by GOLD criteria who neither has other lung disease which alters spirometry nor has primary cardiac disease

FLOW DIAGRAM OF STUDY DESIGN:

	\Box
Eligible	candidates are explained about the study. Written informed consent i
obtained	I from all eligible subjects who are willing to participate in the study.
	Ţ
Enrolled	I subjects will be interviewed for sociodemographic details.
	Ţ
They wi	ll be subjected to thorough clinical examination.
	Ţ
Echocar	diography will be done to the above patients and cardiologist opinior
will be o	obtained.

INCLUSION CRITERIA:

- > Age of onset of disease >40 years.
- > Patients with symptoms suggestive of COPD.
- Diagnosis of COPD based on GOLD criteria.
- Willing to participate in the study

EXCLUSION CRITERIA:

- History suggestive of asthma.
- Other lung diseases that significantly contribute to decline in lung function.
- Patients with clinically evident active pulmonary tuberculosis.
- > Patients with primary cardiac disease.
- Patients who have poor echo window.
- Ongoing or recent exacerbation of COPD within 2 weeks prior to the enrolment in the

study.

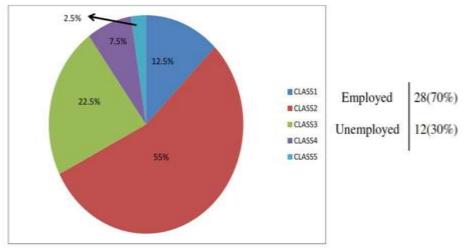
Coexisting conditions that are contraindications or render forced expiratory maneuver difficult to perform.

PATIENTS WITH COPD CLASSIFIED BASED ON GOLD CRITERIA.

Six Minute Walk Test was done according to American Thoracic Society(ATS)

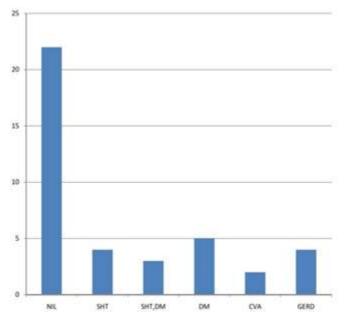
recommendations. Echocardiography was done according to the guidelines by American Society of Echocardiography followed by cardiologist opinion was obtained. Statistical analysis was carried out using SPSS version.17 software. Confidence interval -95% (p -0.05). After initial analysis significant variables were considered for logistic

regression analysis.


GRADE	POST BRONCHODILATOR FEV1 in COPD patients having FEV1/FVC less than 0.7
I- MILD COPD	FEV 1 ≥ 80% of predicted
II- MODERATE COPD	50% ≤ FEV1 less than 80% of predicted
III- SEVERE COPD	30% ≤ FEV1 less than 50% of predicted
IV- VERY SEVERE COPD	FEV 1 less than 30% of predicted

IV. RESULTS AND DISCUSSION

Demographic characteristics of the study population Socio economic status of the study population


S.No	Variable	Sample(n = 40) subjects
1.	Age (in years)	60.65±9.42
2.	Male gender (%)	40(100%)
3.	BMI (in Kg/m ²)	21.44±3.49

Socio economic status of the study population

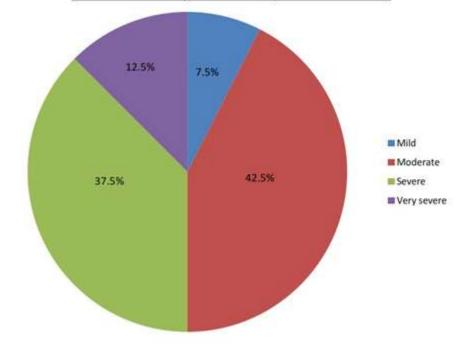
COMORBIDITIES:

- ♦ Comorbidities -18(45%) of subjects
- ♦ Diabetes 5(12.5%)
- \diamond Hypertension 4(10%)
- ♦ GERD 4(10%)
- ♦ CVA 4(10%)

SMOKING PATTERN: Mean smoking pack years - 43.47 \pm 24.16 pack years

35(87.5%) subjects - more than 20 pack years 05(12.5%) subjects - less than 20 pack years

DURATION OF DISEASE:


Mean duration of symptoms - 5.8 ± 3.5 years 18(45%) of subjects had symptoms more than 5 years 22(55%) of subjects had disease less than 5 years

22(55%) of subjects had disease less than 5 years Mean SpO2 - 97.25 \pm 1.35

Dyspnoea –MMRC grade		
Gra	ade 1 16(40%)	
Gra	ade 2 20(50%)	
Gra	ade 3 4(10%)	
Gra	nde 4 0	
GRADING OF COPD BASED ON GOLD GUIDELINES : Mean FEV1 - 1.24 ± 0.49 liters	Mean FEV1 % predicted - 51.0 Mean FVC - 2.25 ± 0.66 liters	5 ± 16.09 %

GOLD grading of severity of COPD	No of patients	Percentage
Mild	3	7.5%
Moderate	17	42.5%
Severe	15	37.5%
Very severe	5	12.5%

COMPARISON OF SEVERITY OF COPD WITH DYSPNOEA GRADE:

MMRC	Mild	Moderate	Severe	Very Severe
	COPD	COPD	COPD	COPD
Grade 1	18.8%	56.2 %	25%	0
Grade 2	0 %	40%	45%	15%
Grade 3	0%	0%	50%	50%

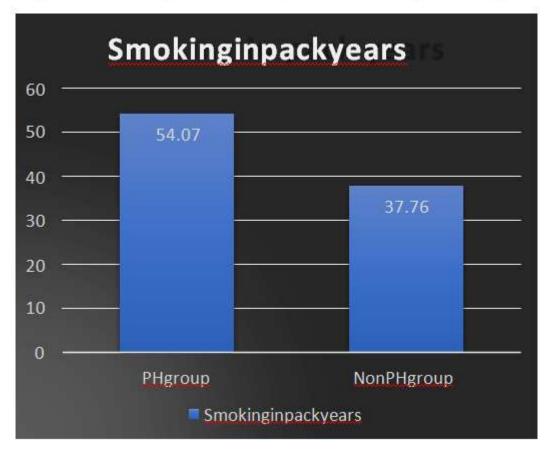
Severity of dyspnoea showed significant correlation with severity of obstruction with P value of 0.023

PULMONARY HYPERTENSION:

Pulmonary hypertension	No of subjects n = 40	Percentage
Present	14	35%
Absent	26	65%

COPD severity	No of patients with PH	Percentage with PH
Mild	1	33.3%
Moderate	4	26.7%
Severe	6	35.3%
Very severe	3	60%

Comparing duration of disease with pulmonary hypertension:


Duration of disease	Subjects with PH
Less than 5 years	10
More than 5 years	4

Statistically not significant (p - 0.125)

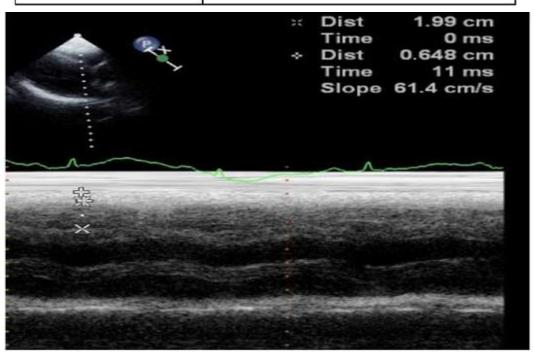
CORRELATION OF VARIABLES BETWEEN PH AND NON PH GROUP (Univariate analysis):

Variables	PH group (mean ± SD)	Non PH group (mean ± SD)	'P' value
Age(in years)	64.14 ± 9.07	58.76 ± 9.23	0.085
BMI(in kg/m ²)	19.82 ± 2.59	22.31 ± 3.64	0.030
Smoking (in Pack years)	54.07 ± 28.09	37.76 ±20.09	0.040
Duration (In years)	5.07 ± 3.09	6.19 ± 3.78	0.349

Logistic regression analysis of variables between PH and non PH group:

International Journal Dental and Medical Sciences Research Volume 6, Issue 6, Nov - Dec 2024 pp 75-83 www.ijdmsrjournal.com ISSN: 2582-6018

Variables	Adjusted odds	95% confidence	'P' Value
	ratio	interval	
BMI	0.76	0.59 - 0.98	0.04
Smoking pack	1.024	0.99 - 1.05	0.13
years			


BMI remained statistically significant with 'P' value of 0.04(adjusted odd's ratio of 0.76, 95%.confidence interval 0.59 - 0.98). Smoking pack years lost its significance('P'value of 0.13, adjusted odd's ratio of 1.024, 95% confidence interval 0.99 - 1.05). We found that pulmonary hypertension was 0.76 times commoner in patients with low body mass index.

2D Echocardiography findings

1. Correlation of Right ventricle Thickness with pulmonary hypertension:

Mean RVT - 0.68 ± 0.13 cm. 12 subjects with PH had RVT > 0.5cm and 2 subjects with PH had RVT < 0.5cm. Statistically not significant '(P' value = 0.232).

RVT	Pulmonary hypertension (n =14)
< 0.5 Cm	2
>0.5 Cm	12

Patients with LVDD	
33.3%	
23.5 %	
53.3 %	
20%	
P = 0.296	
	33.3% 23.5 % 53.3 % 20%

2. Comparison of severity of airway obstruction with LVDD: LVDD was found in 14 subjects.

Statistically not significant.

The important findings in our study were as follows. The mean post bronchodilator FEV1and predicted FEV1 in our study population were 1.24 \pm 0.49 liters and 51.05 \pm 16.09% respectively. The prevalence of pulmonary hypertension increased with the severity of COPD. In stable COPD patients, the pulmonary hypertension were of mild grade.By univariate analysis, COPD patients with pulmonary hypertension had lower BMI and had high smoking pack years than the patients without pulmonary hypertension with 'P' value of 0.030 and 0.040 respectively. With Multiple logistic regression, BMI remained statistically significant with 'P'value of 0.04

V. CONCLUSION

Our study showed that prevalence of pulmonary hypertension increased with severity of COPD. Severe pulmonary hypertension was not observed in our study with stable COPD patients. Right ventricle hypertrophy and diastolic dysfunction of left ventricle were the other common findings in COPD patients. Since cardiovascular disease is the major cause of morbidity and mortality in COPD, it is essential to evaluate the cardiac status at the time of initial diagnosis. The overall survival and quality of life can be improved by addressing this comorbidity.

REFERENCES

- [1]. GOLD. Global Strategy for Diagnosis, Management, and Prevention of COPD. Available at http://
- [2]. www.goldcopd.org/uploads/users/files/GO LD_Report_2014.pdf.
- Menezes AM, Perez-Padilla R, Jardim JR, [3]. et al. Chronic obstructive pulmonary

DOI: 10.35629/5252-06067583

chronic systemic inflammatory syndrome?

disease in five Latin American cities (the PLATINO study): a prevalence study. Lancet 2005; 366: 1875-81.

- Buist AS, McBurnie MA, Vollmer WM, et [4]. al, on behalf of the BOLD Collaborative Research Group. International variation in the prevalence of COPD (The BOLD Study): a population-based prevalence study. Lancet 2007; 370: 741.
- World Health Organization. Chronic [5]. Obstructive pulmonary disease (COPD). 2010. Available at www.who.int/respiratory/copd/en/.
- Anto JM, Vermeire P, Vestbo J, et al. [6]. Epidemiology of chronic obstructive pulmonary disease. Eur Respir J 2001; 17: 982-94.
- Shohaimi S, Welch A, Bingham S, et al. [7]. Area deprivation predicts lung function independently of education and social class. Eur Respir J 2004; 24: 157-61.
- [8]. Lawlor DA, Ebrahim S, Davey SG. self-reported Association between childhood socioeconomic position and adult lung function: findings from the British Women's Heart and Health Study. Thorax 2004; 59: 199–203.
- [9]. Sevenoaks MJ, Stockley RA. Chronic obstructive pulmonary disease, inflammation and co-morbidity - a common inflammatory phenotype? Respir Res 2006; 7: 70.
- Fabbri LM, Rabe KF. From COPD to [10]. Lancet 2007; 370: 797-799.