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ABSTRACT  

A brain tumor is a mass or cluster of abnormal cells 

in the brain that has the potential to spread to other 

tissues nearby and pose a serious threat to the 

patient's life. For effective treatment planning, a 

precise diagnosis is necessary, and the main 

imaging technique for determining the extent of 

brain tumours is magnetic resonance imaging. The 

majority of this increase in Deep Learning 

techniques for computer vision applications may be 

attributed to the availability of a sizable amount of 

data for model training and the advancements in 

model designs that produce better approximations 

in a supervised environment. The availability of 

free datasets with trustworthy annotations has 

significantly improved the classification of cancers 

using such deep learning techniques. These 

techniques often use either 3D models that employ 

3D volumetric MRIs or even 2D models that take 

each slice into account separately. However, 

spatiotemporal models can be used as "spatio-

spatial" models for this job by treating each spatial 

dimension individually or by seeing the slices as a 

succession of images through time. These models 

can learn certain spatial and temporal correlations 

while using less processing power.This study 

classifies several types of brain tumours using two 

spatiotemporal models, ResNet (2+1)D and ResNet 

Mixed Convolution. It was found that both of these 

models outperformed ResNet18, a model that only 

used 3D convolutions. It was also shown that pre-

training the models on a distinct, even unrelated 

dataset before training them for the objective of 

cancer classification enhances performance. As a 

result of these studies, Pre-trained ResNet Mixed 

Convolution was shown to be the most effective 

model, achieving a macro F1-score of 0.9345 and a 

test accuracy of 96.98% while also being the model 

with the lowest computing cost. 

 

I. INTRODUCTION 
The growth of abnormal brain cells is 

known as a brain tumour. Based on their rate of 

growth and likelihood of recurrence following 

therapy, brain tumours are categorized. They can 

be broadly classified into two groups: malignant 

and benign. Noncancerous benign tumours spread 

slowly and are less likely to come back following 

therapy. Contrarily, malignant tumours, which are 

mostly composed of cancer cells, can either locally 

infiltrate tissues or migrate to other parts of the 

body through a process known as metastasis1. 

Mutations in glial cells cause malignancy in normal 

cells, which results in glioma tumours. They make 

about 80 % of the total of all malignant tumours 

and 30 % of all brain and central nervous system 

tumours, making them the most prevalent forms of 

astrocytomas (brain or spinal cord tumors)2. 

Glioma tumours can have Astrocytomas, 

Oligodendrogliomas, or Ependymomas as its 

phenotypic makeup. The World Health 

Organization (WHO) employs the following 

grading-based methodology to categorize each of 

these tumours depending on their aggressiveness: 

 

Grade I - This tumours are frequently detected in 

children and are typically benign tumours, which 

means they are usually treatable. 

 

Grade II - Three tumour types fall within the grade 

II category: oligodendrogliomas, oligoastrocytomas, 

and a combination of both. Adults commonly 

experience them. All low-grade gliomas have the 

potential to develop into high-grade tumours over 

time . 

 

Grade III - Anaplastic Astrocytomas, Anaplastic 

Oligodendrogliomas, and Anaplastic 

Oligoastrocytomas are all examples of grade III 

tumours. They are more sneaky and aggressive 

than grade II. 

 

Grade IV - Glioblastoma Multiforme (GBM), 

another name for grade IV glioma, is the most 

aggressive tumour according to the WHO 

classification. 

In general, grades I and II gliomas are 

considered low-grade gliomas (LGG), while grades 

III and IV are known as high-grade glioma (HGG). 

The LGG are benign tumours, and they can be 
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excised using surgical resection. In contrast, HGGs 

are malignant tumours that are hard to excise by 

surgical methods because of their extent of nearby 

tissue invasion. Figure 1 shows an example MRI of 

LGG and HGG. 

 

 
FIGURE 1 : An example MRI of Low-grade glioma (LGG, on the left) and High-grade glioma (HGG, on the 

right). 

 

A Glioblastoma Multiforme (GBM) typically has 

the following types of tissues (shown in Fig. 2): 

 

: The Tumour Core: This is the region of the 

tumour that has the malignant cells that are actively 

proliferating. 

 

: Necrosis: The necrotic region is the important 

distinguishing factor between low-grade gliomas 

and GBM4. This is the region where the cells/tissue 

are dying, or they are dead. 

 

: Perifocal oedema: The swelling of the brain is 

caused by fluid build-up around the tumour core, 

which increases the intracranial pressure; perifocal 

oedema is caused by the changes in glial cell 

distribution5.                                                                                          

 

 
FIGURE 2 : High-grade glioma structure on T1ce, T2 and FLAIR contrast images (from left to right), (red 

circle) Necrotic core, (blue circle) Perifocal oedema. 

 

The location, histological subtype, and 

tumour margins are just a few of the variables that 

affect a brain tumor's prognosis. Even after 

treatment, the tumour frequently returns and 

advances to grade IV3. The site of the tumour can 

be determined using contemporary imaging 

techniques like MRI, which is then utilised to 

investigate tumour progression and arrange surgical 

procedures. Along with its hemodynamics, MR 

imaging is used to evaluate the anatomy, 
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physiology, and metabolic activity of the lesion. As 

a result, MR imaging continues to be the major 

method for diagnosing brain tumours. Early cancer 

identification in particular has the potential to alter 

how a patient is treated. Early detection is essential 

because lesions that are detected earlier are more 

likely to be treatable; if action is taken, this might 

be the difference between life and death. By 

prioritizing only malignant lesions, deep learning 

techniques might lessen the strain of radiologists 

reading numerous images and assist in automating 

the process of finding and classifying brain lesions. 

This can decrease diagnostic errors6 and eventually 

increase overall efficiency. Recent research has 

demonstrated that deep learning techniques in 

radiography have already surpassed human 

performance levels for some pathologies7. 

 

BACKGROUND 

Recently, a number of deep learning-based 

approaches for classifying brain tumours have been 

presented. T1 contrast-enhanced images were used 

by Mzoughi et al.8 to suggest a method for 

classifying high-grade and low-grade gliomas. Pei 

et al.9 performed a similar study on the 

classification of gliomas based on grading, 

segmenting the tumour first before classifying it as 

either HGG or LGG. The majority of the literature 

on the classification and grading of glioma tumours 

employed a single MR contrast image at a time, 

however Ge et al.10 used a fusion framework that 

simultaneously classifies the tumour using T1 

contrast-enhanced, T2, and FLAIR images. The 

non-subsampled shearlet transform (NSST) was 

used by Ouerghi et al.11 to transform T1 images 

into low frequency (LF) and high frequency (HF) 

sub-images, effectively separating principle 

information from edge information in the source 

image. The images were then fused according to 

predefined rules to include the coefficients, 

resulting in the fusion of T1 and T2 or FLAIR 

images. The majority of the literature simply 

distinguishes between the various grades of 

tumours and does not include healthy brains as a 

separate category. 

 

One of the most effective network 

topologies for image identification tasks, ResNet or 

residual network, was proposed by He et al.12 and 

addresses issues with deep networks, such as 

disappearing gradients. The identity mappings 

known as residual-links, or "skipped connections," 

are introduced in this study. Their outputs are 

appended to the outputs of the other stacked layers. 

These identification links enhance the training 

process without increasing network complexity. 

The spatiotemporal models for action recognition 

developed by Tran et al.13 are essentially 3D 

convolutional neural networks built on ResNet. 

Video data is three-dimensional since it has two 

spatial dimensions and one time dimension. It is 

clear that utilizing a network with 3D convolution 

layers is the best option for processing such data 

(such as an action detection task). ResNet (2+1)D 

and ResNet Mixed Convolution are two different 

types of spatiotemporal models that Tran et al.13 

introduced. In the ResNet(2+1)D model, 2D and 

1D convolutions are employed, with the 2D 

convolutions being used for the spatial component 

and the 1D convolutions being saved for the 

temporal component. By utilizing non-linear 

rectification, this provides an advantage of greater 

non-linearity and makes this type of mixed model 

more "learnable" than traditional complete 3D 

models. The ResNet Mixed Convolution model, on 

the other hand, is built using a combination of 2D 

and 3D Convolution processes. The model's first 

layers are constructed using 3D convolution 

techniques, whereas its subsequent layers use 2D 

convolutions. The justification for this setup is that 

since most motion-modelling takes place in the first 

few layers, using 3D convolution there better 

captures activity. Transfer learning14 is a method 

widely employed to boost the performance of the 

same network architecture in addition to trying to 

enhance the architecture itself. This method allows 

you to use a model that has already been trained to 

perform one task to perform another task entirely. 

Before beginning the training, the model 

parameters are typically initialized at random. 

Transfer learning, on the other hand, trains the 

model for task two using model parameters learnt 

from task one as the starting point (referred to as 

pre-training), rather than random values. Pre-

training has proven to be a useful technique for 

enhancing the initial training process, ultimately 

leading to higher accuracy. 15,16. 

 

CONTRIBUTION  

For three dimensional video classification 

applications, spatiotemporal models are frequently 

employed. Their potential for identifying 

"spatiospatial" models, such as 3D volumetric 

pictures like MRIs, has not yet been investigated. 

This examines the potential for using the 

spatiotemporal models ResNet(2+1)D and ResNet 

Mixed Convolution as "spatiospatial" models by 

treating the slice dimension of the three-

dimensional volumetric pictures differently from 

the other two spatial dimensions. Using a single 

MR contrast, "Spatial" was used to classify brain 

tumours of various glioma types based on their 
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grade as well as healthy brains from 3D volumetric 

MR Images. Their performances were compared to 

a pure 3D convolutional model (ResNet3D). The 

models will also be contrasted with and without 

pre-training in order to assess the usefulness of 

transfer learning for this purpose. 

 

II. METHODOLOGY 
The network models utilized in this study 

are covered in detail in this section along with 

implementation information, pre-training and 

training methodologies, data augmentation 

approaches, dataset details, data pre-processing 

procedures, and evaluation metrics. 

 

NETWORK MODELS  

For tasks using video where there are two 

spatial and one temporal dimension, spatiotemporal 

models are typically used. These models, as 

opposed to pure 3D convolution-based models, 

handle the spatial and temporal dimensions in 

various ways. A 3D convolution-based model is 

frequently used since 3D volumetric image 

classification tasks lack a time component. They 

are occasionally cut into 2D slices and subjected to 

2D convolution-based models. In order to make the 

convolution kernels invariant to tissue 

discrimination in all dimensions and learn more 

complicated characteristics across voxels, 3D 

filters are used for the purpose of classifying 

tumours. 2D convolution filters will be used to 

capture the spatial representation within the slices.  

Spatiotemporal models can either reduce the 

complexity of the model or provide more non-

linearity by combining two different forms of 

convolution into one model. Consider the 

spatiotemporal models as "spatiospatial" models in 

order to take use of these benefits while working 

with volumetric data; this is the rationale for 

utilizing such models for a tumour classification 

task. In this study, in-plane dimensions are taken as 

the spatial dimensions while slice-dimension is 

treated as the pseudo-temporal dimension of 

spatiotemporal models. The work of Tran et al.13 

served as the foundation for the spatiotemporal 

models used here as spatial models. 

 

ResNet (2+1)D and ResNet Mixed Convolution are 

two alternative spatiospatial models that are 

investigated in this article. Their performances are 

contrasted with ResNet3D, a model that only uses 

3D convolutions. 

 

ResNet (2+1)D 

Instead of using a single 3D convolution, 

ResNet (2+1)D employs a combination of 2D 

convolution and 1D convolution. As opposed to 

employing a single 3D Convolution13, this setup 

has the advantage of allowing an additional non-

linear activation unit between the two convolutions. 

The network's overall number of ReLU units then 

rises as a result, enabling the model to learn even 

more complicated functions. The ResNet(2+1)D 

employs a stem that consists of a 1D convolution 

with a kernel size of three and a stride of one, 

followed by a 2D convolution with a kernel size of 

seven and a stride of two, receiving one channel as 

an input and producing 45 channels as the output. 

The following set of blocks includes four 

convolutional blocks, each of which has two sets of 

fundamental residual blocks. A 2D convolution 

with a kernel size of three and a stride of one is 

found in each residual block, followed by a 1D 

convolution with a kernel size of three and a stride 

of one. A 3D batch normalization layer, followed 

by a ReLU activation function, follows each 

convolutional layer in the model—both the 2D and 

the 1D versions. To down-sample the input by half, 

a pair of 3D convolution layers with a kernel size 

of one and a stride of two are used to separate the 

residual blocks inside the convolutional blocks, 

with the exception of the first convolutional block. 

The 1D convolutions are applied on the slice 

dimension, whereas the 2D convolutions are 

applied in-plane. An adaptive average pooling layer 

with an output size of one for all three dimensions 

has been introduced after the last convolutional 

block. 

After the pooling layer, a dropout layer 

followed by a fully connected layer with n output 

neurons for n classes were added to obtain the final 

output. Figure 3(a) portrays the schematic diagram 

of the ResNet (2+1)D architecture. 
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FIGURE 3 : Schematic representations of the network architectures. (a) ResNet (2+1)D, (b) ResNet Mixed 

Convolution, and (c) ResNet 3D. 

 

ResNet mixed convolution 

A combination of 2D and 3D convolutions 

are used in ResNet Mixed Convolution. This 

model's stem includes a 3D convolution layer with 

a kernel size of (3,7,7), a stride of (1,2,2), and a 

padding of (1,3,3), where the first dimension is the 

slice dimension and the other two are the in-plane 

dimensions. This layer accepts a single channel as 

input and outputs 64 channels. Three 2D 

convolution blocks come after the stem, then one 

3D convolution block. All convolution layers, both 

3D and 2D, share the same three-kernel size and 

one-stride parameters. Each of these residual 

blocks has two convolution layers, and each of 

these convolution blocks has two residual blocks. 

Similar to ResNet (2+1)D, a set of 3D convolution 

layers with a kernel size of one and a stride of two 

are used to divide the residual blocks inside the 

convolutional blocks, with the exception of the first 

convolutional block, to down-sample the input by 

half. A 3D batch normalization layer and a ReLU 

activation function are placed after each 

convolutional layer in the model, both 3D and 2D. 

The rationale behind utilizing both 2D and 3D 

modes of convolution is that although 2D can learn 

representation inside each 2D slice, 3D filters can 

learn the spatial properties of the tumour in 3D 

space. The final pooling, dropout, and fully 

connected layers follow the convolutional blocks 

and are the same as those in the ResNet (2+1)D 

architecture. Figure 3(b) shows the schematic 

representation of this model. 

 

ResNet3D 

A pure 3D ResNet model is used as the 

benchmark to compare the performance of the 

spatiospatial models against (c). With the exception 

of the fact that this model exclusively employs 3D 

convolutions, the ResNet3D model's design is 

nearly identical to that of ResNet Mixed 

Convolution (see "Network models" section). The 

main variation between these models stems from 

the usage of four 3D convolution blocks in this 

model as opposed to one 3D convolution block, 

followed by three 2D convolution blocks, in 
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ResNet Mixed Convolution. A 3D ResNet18 model 

is created using this ResNet3D architectural setup. 

 

III. SUMMARY AND COMPARISON 
The input proceeds to the stem, followed 

by four convolutional blocks, the output block—

which has an adaptive pooling layer, then a dropout 

layer, and lastly a fully connected layer. This is the 

overall structure of the network models. The stem 

of ResNet Mixed Convolution and ResNet 3D is 

identical and consists of a 3D convolutional layer 

with a kernel size of (3,7,7), a batch normalization 

layer, and a ReLU. ResNet (2+1)D employs a 

distinct stem that consists of a 2D convolution 

layer with a kernel size of seven followed by a 1D 

convolution layer with a kernel size of three, 

separating the 3D convolution (3,7,7) used by the 

other models into a pair of 2D and 1D convolution 

layers (7,7) and (3,3). (3). A batch normalization 

layer and ReLU pair are followed by both 2D and 

1D convolution inside of this stem. The 

convolutional blocks in the ResNet3D and ResNet 

Mixed Convolution designs have the same 

structure: two residual blocks made up of two sub-

blocks, each of which has a 3D convolution with a 

three-kernel size, followed by a batch 

normalization layer and a ReLU. As opposed to the 

3D convolutional layers used by the other models, 

the initial convolutional block of the ResNet 

(2+1)D architecture uses a pair of 2D and 1D 

convolutions with a three kernel size. The rest of 

the building is identical. Because the 3D 

convolutions are divided into a pair of 2D and 1D 

convolutions, it is noted that this model has more 

non-linearity than others. Additional pairs of batch 

normalization and ReLU may have been utilised 

between the 2D and 1D convolutions. The second, 

third, and fourth convolutional blocks all contained 

a downsampling pair, which was composed of a 3D 

convolutional layer with a kennel size of one and a 

stride of two, followed by a batch normalization 

layer. This downsampling pair was included in the 

first convolutional block, but not in the other three 

blocks (applicable to all three models). In the first 

convolutional block, this was absent. The number 

of input features to the first block is 64, while the 

number of output features to the fourth (and final) 

block is 512. The convolution blocks of each of the 

three models double the input features by two. In 

the last stage of each of these models, an adaptive 

average pooling layer imposes a 1×1×1,  output 

form with 512 distinct features. 

A dropout with a probability of 0.3 is then 

applied to introduce regularization to prevent over-

fitting before supplying them to a fully connected 

linear layer that generates n classes as output. The 

width and depth of these models are comparable, 

but they differ in terms of the number of trainable 

parameters depending upon the type of convolution 

used, as shown in Table 1. It is noteworthy that the 

less the number of trainable parameters - the less 

the computational costs. A model with a lesser 

number of parameters would require lesser memory 

for computation (GPU and RAM), and also the 

complexity of the model is lesser—reducing the 

overall computational costs for both training and 

inference. Moreover, a lesser number of trainable 

parameters would also reduce the risk of overfitting. 

 

TABLE 1 Total number of trainable parameters for each model. 

Model No. of parameters 

ResNet3D 33,150,522 

ResNet (2+1)D 31,297,254 

ResNet mixed convolution 11,472,963 

 

IV. IMPLEMENTATION AND TRAINNG 
The Torchvision models were modified 

and implemented using PyTorch18. An Nvidia 

RTX 4000 GPU with 8 GB of memory was used 

for training with a batch size of 1. Models with and 

without pre-training were contrasted. On Kinetics-

40020, all models with pre-training had been 

trained, with the exception of the stems and fully 

connected layers. The 3D volumetric MRIs only 

have one channel, but the RGB images from the 

Kinetics dataset have three channels. As a result, 

the stem that had been trained on the Kinetics 

dataset was unable to be applied and was initialized 

at random. The fully linked layer was additionally 

initialized with random weights because Kinetics-

400 offers 400 output classes whereas the task at 

hand only requires three (LGG, HGG, and Healthy). 

Trainings were performed using mixed-precision21 

with the help of Nvidia’s Apex library22. The loss 

was calculated using the weighted cross-entropy 

loss function to minimize the under-representation 

of classes with fewer samples during training and 

was optimized using the Adam optimizer with a 

learning rate of 1e−5 and weight decay coefficient 

λ=1e−3.  

 

Weighted cross-entropy loss 

The normalized weight value for each class (Wc) is 

calculated using:  
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Where sample is the number of samples from class 

c and samplest are the total number of samples 

from all classes. The normalized weight values 

from this equation is then used to scale cross-

entropy loss of the respective class loss: 

 
 

Where xc is the true distribution and P(c) is the 

estimate distribution for class c. The total cross-

entropy loss then is the sum of individual class 

losses. 

 

 
 

Data Augmentation 

Before training the models, different data 

augmentation techniques were applied to the 

dataset, and TorchIO23 was utilised for that. Light 

and heavy augmentation were used in the initial 

experiments, with light augmentation consisting 

solely of random affine transformations (scale 0.9-

1.2, degrees 10) and random flips (L-R, probability 

0.25) and heavy augmentation consisting of the 

latter two as well as elastic deformation and 

random k-space transformations (motion, spike, 

and ghosting). In addition to having poor final 

accuracy, it was shown that the loss took 

substantially longer to converge when the network 

was trained using heavily augmented input. 

Therefore, in this study, relatively minimal 

augmentation was applied. 

 

Dataset 

In this study, two different datasets were 

used: the non-pathological images were taken from 

the IXI Dataset26, and the pathological images 

were taken from the Brain Tumour Segmentation 

(BraTS) 2019 dataset, which includes images with 

four different MR contrasts (T1, T1 contrast-

enhanced, T2, and FLAIR). T1 contrast-enhanced 

(T1ce) MRIs, one of the four types of MRIs 

available, are most frequently employed for single-

contrast tumour classification8,27. Consequently, 

332 participants' T1ce images from the BRaTS 

collection were used in this study: 259 volumes of 

high-grade glioma (HGG) and 73 volumes of low-

grade glioma (LGG). To have the same number of 

subjects as HGG, 259 T1 weighted volumes were 

chosen at random from the IXI dataset as healthy 

samples. The final combined dataset was then 

randomly divided into 3-folds of training and 

testing split with a ratio of 7:3. 

 

Data pre-processing 

The brain extraction tool (BET2) of FSL28,29 was 

used as the first step in the pre-processing of the 

IXI images. As the BraTS photos are already skull 

stripped, this was done to maintain consistency 

throughout the input data. As employed by Isensee 

et al.30, the intensity values of all the volumes 

from the combined datasets were additionally 

normalized by scaling intensities to the [0.5,99.5] 

percentile. Finally, the volumes were re-sampled 

with the same 2 mm isotropic voxel-resolution. 

 

Evaluation Metrics 

The performance of the models was compared 

using precision, recall, F1 score, specificity, and 

testing accuracy. Furthermore, a confusion matrix 

was used to show class-wise accuracy. 

 

V. RESULTS 
Comparisons were made between the 

models' performances with and without pre-training. 

Figures 4, 5, and 6 present, for ResNet (2+1)D, 

ResNet Mixed Convolution, and ResNet 3D, 

respectively, the average accuracy over 3-fold cross 

validation using confusion measures. 
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FIGURE 4 : Confusion matrix for 3-fold cross-validation on pre-trained ResNet(2+1)D. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 5 : Confusion matrix for 3-fold cross-validation on ResNet mixed convolution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 6 : Confusion matrix for 3-fold cross-validation on ResNet3D18. 
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Figure 7 shows the class-wise performance of the different models, both with and without pre-training, using 

precision, recall, specificity, and F1-score. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 7 : Heat-maps showing the class-wise performance of the classifiers, compared using precision, recall, 

specificity, and F1-score: (a) LGG, (b) HGG, and (c) healthy. 

 

Comparison of the Models 

The mean F1-score over 3-fold cross-

validation was used as the metric to compare the 

performance of the different models. Tables 2, 3 

and 4 show the results of the different models for 

the classes LGG, HGG, and Healthy, respectively; 

and finally Table 5 shows the consolidated scores. 

 

TABLE 2 : Low-grade glioma model comparison (*denotes the overall winning model). 

Low-grade glioma  

Model Mean F1 score 

ResNet 3D 0.8542 ± 0.049 

Pre-trained ResNet 3D 0.8143 ± 0.048 

ResNet(2+1)D 0.8448 ± 0.019 

Pre-trained ResNet(2+1)D 0.8739 ± 0.041 
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ResNet mixed convolution 0.7734 ± 0.031 

Pre-trained ResNet mixed convolution 0.8949 ± 0.033 

 

For low-grade glioma (LGG), ResNet Mixed Convolution with pre-training achieved the highest F1 score of 

0.8949 with a standard deviation of 0.033. The pre-trained ResNet(2+1)D is not far behind, with 0.8739 ± 0.033. 

 

TABLE 3 : High-grade glioma model comparison (*denotes the overall winning model). 

High-grade glioma  

Model Mean F1 score 

ResNet 3D 0.8773 ± 0.034 

Pre-trained ResNet 3D 0.8634 ± 0.042 

ResNet(2+1)D 0.8730 ± 0.022 

Pre-trained ResNet(2+1)D 0.8979 ± 0.032 

ResNet mixed convolution 0.8231 ± 0.027 

Pre-trained ResNet mixed convolution 0.9123 ± 0.029 

 

For the high-grade glioma (HGG) class, 

the highest F1 was achieved by the pre-trained 

ResNet Mixed Convolution model, with an F1 

score of 0.9123 ± 0.029. This is higher than the 

best model’s F1 score for the class LGG. This can 

be expected because of the class imbalance 

between LGG and HGG. As with low-grade glioma, 

the second-best model for HGG is also the Pre-

trained ResNet(2+1)D with the F1 score of 0.8979 

± 0.032. 

 

TABLE 4: Healthy brain model comparison (*denotes the overall winning model). 

Healthy brain  

Model Mean F1 score 

ResNet 3D 0.9970 ± 0.005 

Pre-trained ResNet 3D 0.9998 ± 0.0002 

ResNet(2+1)D 0.9927 ± 0.009 

Pre-trained ResNet(2+1)D 0.9992 ± 0.001 

ResNet mixed convolution 0.9855 ± 0.004 

Pre-trained ResNet mixed convolution 0.9963 ± 0.002 

 

The healthy brain class achieved the 

highest F1 score of 0.9998 ± 0.0002, with the pre-

trained ResNet 3D model, which can be expected 

because of the complete absence of any lesion in 

the MR images making it far less challenging for 

the model to learn and distinguish it from the brain 

MRIs with pathology. Even though the pre-trained 

ResNet 3D model achieved the highest mean F1 

score, all pre-trained models achieved similar F1 

scores, i.e. all the mean scores are more than 

0.9960—making it difficult to choose a clear 

winner. 

 

TABLE 5 : Consolidated comparison of the models (*denotes the overall winning model). 

Consolidated scores   

Model Macro F1 score Weighted F1 score 

ResNet 3D 0.9095 0.9269 

Pre-trained ResNet 3D 0.8925 0.9171 

ResNet(2+1)D 0.9035 0.9220 

Pre-trained ResNet(2+1)D 0.9237 0.9393 

ResNet mixed convolution 0.8607 0.8881 

Pre-trained ResNet mixed convolution 0.9345 0.9470 

 

ResNet Mixed Convolution with pre-

training came up as the best model for both classes 

with pathology (LGG and HGG) and achieved a 

similar score as the other models while classifying 

healthy brain MRIs, as well as based on macro and 

weighted F1 scores - making this model as the clear 

overall winner. It can also be observed that the 

spatiospatial models performed better with pre-

training, but ResNet 3D performed better without 

pre-training. 
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Comparison against Literature 

TABLE 6 : Comparisons against other published works *s=specificity † cross-validated ‡ State of the art. 

Study Method Contrast Dimension Test Accuracy 

Shahzadi  et al.31 CNN with LSTM T2-FLAIR 3D 84.00 % 

 

Pei et al.9 

Similar to U-Net for 

Segmentation, 

Regular CNN for 

classification 

 

T1, T1ce, T2, 

T2-FLAIR 

 

3D 

 

74.9% 

Ge et al.10 Deep CNN T1, T2, T2-

FLAIR 

2D 90.87% 

Yang et al.27 Pre-trained 

GoogLeNet 

T1ce 2D 94.5% † 

Mzoughi et al.8 Deep CNN T1ce 3D 96.49% 

Zhuge et al.32 Deep CNN T1, T1ce, T2, 

T2-FLAIR 

3D 97.1% s*=0.968 

Ouerghi et al.11 ‡ Random forest T1, T2, T2-

FLAIR 

2D 96.5% 

This paper Pre-trained ResNet 

mixed convolution 

spatiospatial model 

 

T1ce 

3D  

 

This subsection compares seven more 

research papers that classified LGG and HGG 

tumours against the top model from the preceding 

subsection (ResNet Mixed Convolution with pre-

training). Since mean test accuracy was the most 

often used statistic in those articles, it was utilised 

as the metric to compare the outcomes.  

 

Beginning with Shahzadi et al.31, who 

employed T2-FLAIR images from the BraTS 2015 

dataset and LSTM-CNN to distinguish between 

HGG and LGG. Their research focused on 

employing a smaller sample size, and they were 

successful in achieving an accuracy rate of 

84.000%31. Pei et al.9, who used all of the 

contrasts in the BraTS dataset and segmented their 

data using a model akin to the U-Net before doing 

classification, nonetheless only managed to reach a 

classification accuracy of 74.9 percent. Ge et 

alstrategy .'s of simultaneously training several 

streams utilizing multiple contrasts is new. On all 

the contrasts, their model had an overall accuracy 

of 90.87 percent, and on T1ce, it had an accuracy 

of 83.73 percent.  

 

Deep convolutional neural networks were 

used by Mzoughi et al.8 to reach 96.59 percent on 

T1ce images. It is challenging to compare their 

conclusions to other research because their study 

only provides the overall accuracy of their model 

as a metric for their findings. Using pre-trained 

GoogLeNet on 2D images, Yang et al.27 carried 

out subsequent research, attaining an overall 

accuracy of 94.5 percent.  

 

Although they did not use the BraTS 

dataset, the goal of their work was to categorize 

glioma tumours according to LGG and HGG 

grading. In comparison to our research, their 

dataset contained less samples of the LGG and 

HGG classes, with the former having 52 samples 

and the latter having 61 samples27. In their article, 

Ouerghi et al.11 used a variety of machine learning 

techniques to train on fusion images, including the 

random forest technique, on which they were able 

to classify high-grade and low-grade gliomas with 

an accuracy of 96.5 percent.  

 

Finally, Zhuge et al.32 surpassed the 

suggested model by 0.12 percent and reached an 

outstanding 97.1 percent utilizing Deep CNN for 

classification of glioma based on LGG and HGG 

grading. This discrepancy can be attributed to two 

factors: 1) their use of BraTS 2018 in conjunction 

with an extra dataset from The Cancer Imaging 

Archive, and 2) their use of four different contrasts, 

both of which greatly expand the training set. 

Furthermore, their publication has no reports of 

cross-validation. The complete comparison data are 

displayed in Table 6. 

 

VI. DISCUSSION 
As separating healthy brains from brains 

with pathology is, in comparison, a simpler task 

than determining the grade of the tumour, all of the 

models' F1 scores for classifying healthy brains 

were extremely close to one. Furthermore, MRIs 

may have caused a dataset bias by employing two 

distinct datasets for healthy and sick brain. The pre-

trained ResNet Mixed Convolution model fared 
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best at grading tumours, whereas all three pre-

trained models performed similarly at grading 

healthy brains. Macro and weighted F1 scores were 

utilised to compare the models based on aggregated 

scores. However, because the dataset was 

unbalanced, the macro F1 score should be given 

more weight. Both of the metrics declared the pre-

trained ResNet Mixed Convolution as the clear 

winner. 

 

The classification performance of the 

models for the LGG class has been less successful 

than the other two classes, which is an intriguing 

finding from the confusion matrices. Even the top 

model could only achieve an accuracy of 81 

percent for LGG, 96 percent for HGG, and almost 

perfect results for healthy. This could be explained 

by the dataset's extreme imbalance, which included 

259 volumes for HGG and healthy while only 

having 73 volumes for LGG (see "Dataset" section). 

Even though weighted cross-entropy loss 

(―Weighted cross-entropy loss‖ section) was used 

in this research to deal with the problem of class 

imbalance, increasing the number of LGG samples 

or employing further techniques to deal with this 

problem further and might improve the 

performance of the models for LGG33. 

 

Notably, despite having the fewest 

trainable parameters of any model, the pre-trained 

ResNet Mixed Convolution produced the best 

classification performance (see Table 1). It should 

also be highlighted that both spatiospatial models 

outperformed the pure 3D ResNet18 model, despite 

the fact that they had less trainable parameters. 

Less trainable parameters can result in lower 

computational costs and a lower likelihood of 

overfitting. The increase in non-linearity brought 

about by the additional activation functions 

between the 2D and 1D convolutions in the (2+1)D 

convolutional layers, according to the author, 

helped the ResNet (2+1)D model outperform 

ResNet3D, and the reduction of trainable 

parameters while maintaining the same number of 

layers helped the ResNet Mixed Convolution 

model succeed. The spatial relationship between 

the three dimensions is not preserved within the 

network like a fully 3D network as ResNet3D—

which is a limitation of this architecture and may 

have some unanticipated negative effects. Despite 

the fact that the spatiospatial models performed 

better, it is important to note that they do not 

adequately maintain the 3D nature of the data. The 

author proposed that this relationship was 

indirectly maintained through the network's 

channels, and that the network might pick up on the 

general representation in order to make the proper 

classifications. The trials have additionally 

demonstrated that, for the presented brain tumour 

classification challenge, spatiospatial models 

outperform completely 3D models. Nevertheless, 

these models need to be further tested for various 

tasks before a general agreement is reached 

regarding this finding. 

 

In this research, the "specially-treated" 

spatial dimension of the spatiospatial models—

which can alternatively be thought of as the 

pseudo-temporal dimension of the spatiotemporal 

models—was assumed to be the slice dimension in 

the axial direction. It has still to be proven whether 

it is also possible to utilize the benefits of such 

models by similarly orienting the data in sagittal or 

coronal orientation, according to the author premise. 

Additionally, it was found that the pre-trained 

models took first place in each of the three classes. 

Pre-training had a different impact on each of the 

three models, though. Pre-training enhanced the 

performance of the models for both spatiospatial 

models, although to varying degrees: 2.24 percent 

for ResNet (2+1)D and 8.57 percent for ResNet 

Mixed Convolution (based on macro F1 scores). 

Pre-training, however, adversely affected the 3D 

ResNet18 model (for two out of three classes), 

resulting in a 1.87 percent reduction in the macro 

F1 score. The pre-training led to an overall 

improvement of 2.88 percent across all models, as 

seen by the average macro F1 scores for all the 

models with and without pre-training (0.9169 with 

pre-training, 0.8912 without pre-training). The fact 

that the pre-trained networks were first trained on 

RGB videos is important. The performance of the 

models might be enhanced by pre-training them 

using MRI volumes or MR films (dynamic MRIs). 

Regarding comparisons to other research that have 

been published, it's interesting to note that those 

earlier papers simply categorized distinct grades of 

brain tumours (LGG and HGG), whereas this paper 

additionally added a class for healthy brains. As 

more classes make the task harder, the outcomes 

are therefore not entirely comparable. Even so, the 

results of the winning model are superior to all 

previously published techniques, with the 

exception of one that showed outcomes that were 

on par with ResNet Mixed Convolution (that paper 

reported 0.12% better accuracy, and 0.41%less 

specificity).However, this paper used four different 

contrasts and an additional dataset apart from 

BraTS, making them have a larger dataset for 

training. 
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VII. CONCLUSION 
This research confirms how 

ResNet(2+1)D and ResNet Mixed Convolution, 

acting as spatiospatial models, might enhance the 

classification of brain tumour grades (i.e. low-

grade and high-grade glioma), as well as 

classifying brain pictures with and without tumours, 

while lowering the computing costs. The 

performance of the spatiospatial models was 

compared to a pure 3D convolution model using a 

3D ResNet18 model. To examine the efficacy of 

pre-training in this configuration, each of the three 

models was trained from scratch as well as using 

weights from pre-trained models that were trained 

on an action recognition dataset. Three fold cross-

validation was used to produce the final results. 

Despite having fewer trainable parameters, it was 

found that the spatiospatial models outperformed a 

pure 3D convolutional ResNet18 model in terms of 

performance. Further observation reveals that pre-

training enhanced the models' functionality. 

Overall, the pre-trained ResNet Mixed Convolution 

model was shown to be the best model in terms of 

F1-score, attaining 0.8949 and 0.9123 F1-scores for 

low-grade glioma and high-grade glioma, 

respectively, and a macro F1-score of 0.9345 and a 

mean test accuracy of 96.98 percent. This research 

demonstrates the potential of spatiospatial models 

to outperform a fully 3D convolutional model. This 

was demonstrated here, however, only for the 

specific job of classifying brain tumours using the 

dataset BraTS. These models should be compared 

for other tasks in the future to build a common 

consensus regarding the spatiospatial models. One 

limitation of this study is that it only used T1 

contrast-enhanced images for classifying the 

tumours, which already resulted in good accuracy. 

Incorporating all four available types of images (T1, 

T1ce, T2, T2-Flair) or any combination of them 

might improve the performance of the model even 

further. 
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