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ABSTRACT: Assuming Fn to be the probability 

that the system will fail in the future when it is now 

at population level n, I had obtained a recurrence 

relation and solved it completely for all values of n 

in three different cases. Obtaining the value of 1 – 

Fn , I computed F1 for which I had computed the 

optimal value. The calculation of Fn and minimum 

value of F1 are dealt in detail in this paper. From 

these calculations, we can understand an important 

concept regarding the shifting of proliferation to 

hyper-mutation of cells.  

Keywords:  Population Level, Relative Rate, 

Steady Rate, Recurrence Relation, Lagrange 

Parameters.   

 

I. INTRODUCTION 
Beginning with a somewhat 

impressionistic version of this model, in which 

exposure to antigen (with T-cell help implied) 

starts the process by activating a medium affinity 

B-cell of a population, one mutation away from 

high affinity. Such a cell proliferates after 

activation at steady rate  , while the antigen is 

killing the infected organism at steady rate r. The 

population of interest is one mutated site, out of m 

relevant DNA sites, away from the high-affinity 

Ab, whose production neutralizes the Ag and so 

annuls the death rate r; we assume that the mutation 

rate Pn is controlled by the population size n. We 

want to choose the repertoire {Pn} to minimize the 

probability F1 that the initially activated system 

fails due to death of the host organism before 

settling into steady high-affinity production. 

 

II. DEVELOPING THE MODEL 
Let Fn be the probability that the system 

will fail in the future when it is now at population 

level n. The next event can either be death of the 

host at relative rate r, proliferation at relative rate     

n , or mutation of one of the m relevant DNA 

sites at relative rate mnPn. But m – 1 of the m 

mutations produce a still lower affinity cell, which 

is eliminated from the population and so we have 

the following recurrence relation  
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III. SOLUTION TO THE RECURRENCE 

RELATION 
I now choose{Pn}to minimize F1 by 

imposing the ―equations of motion‖ with Lagrange 

parameters, and since these equations can be 

written as linear in Pn, optimal strategy will be 

achieved  if either min 0P   or maxP    (finite 

maxP  gives similar results) at each n. There will 

then be one—and only one, it can be shown—

switch point, say at 0n n , we have 

00, (3.1)nP n n   and 

0, (3.2)nP n n   .  

Now using (3.2) in (2.1) by observing the fact as 

nP   , the first two terms in the right hand side 

of (2.1) vanish whereas the doesn’t vanish giving 
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If 0n n then from (3.1), we have 0nP  . Using 

this in (2.1), we get  
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Similarly if 0n n using (3.1) in (2.1), we get  
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Now taking 0 1n n  in (3.3), we get 
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Substituting (3.6) in (3.4), we have 
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which we get 
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Now from (3.3), we get 
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where 
0nF is given by (3.7).  

Similarly, for 0n n , (3.5) can be written as  
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Using the pattern obtained in (3.9) for n up to 

0 1n  and using (3.7) we have  
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In particular, for n = 1, we have  
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Now in the denominator of (3.11) we find the term 

0( 1) !
r

n


 
  

 
 

Hence F1 in (3.11) will attain minimum if 
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Substituting the optimal value of 0n obtained in 

(3.12) to (3.7), we find that  
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IV. CONCLUSION 
In this paper, I had derived the expression 

for the probability that the system will fail in the 

future when it is now at population level n. After 

doing so, I had obtained F1 and tried to minimize it. 

From the minimum value of F1 obtained in (3.13), 

we see that one doesn’t shift from proliferation to 

hyper-mutation until each of the m closest 

sequences has had its chance.  
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