Effectiveness of vaccines against omicron

Dr. Ashish Sadashiv Danane

ABSTRACT- On November 26, 2021 WHO designated the variant B.1.1.529 virus a variant of concern (VOC) and named it omicron. This article discusses the effectiveness alongwith waning of present vaccines and their booster doses against omicron.

Keywords- omicron, vaccine, effectiveness, booster, waning, covid-19

Abbreviations- VE- vaccine effectiveness

VOC- variant of concern

I. INTRODUCTION
Lancet Laboratories in South Africa, observed that routine polymerase chain reaction (PCR) tests for SARS-CoV-2 failed to detect the S gene which is a key target in many virus samples. The genome was heavily mutated to test the missed S gene after sequencing another eight viruses. On November 26, 2021, WHO designated the variant B.1.1.529 virus a “variant of concern” (VOC) and named it the Omicron[1]. Omicron raised concerns about reduced vaccine efficacy and risk of reinfection due to mutations in the spike protein (S), which is the antigenic target of vaccine-elicted antibodies [2] infection of omicron is more in people who are immune to other variants of covid-19[3,4,5,7]. Omicron has a higher reinfection risk profile than other variants[8]. PCR tests that include multiple gene targets are not likely to be much affected and should be continued to detect SARS-CoV-2 infection, including the Omicron variant. This has been confirmed by statements issued by United States Food and Drug Administration (US FDA) and the manufacturers [9] based on sequence analysis and preliminary laboratory evidence.

Animal studies: Two animal models have been used; mice expressing human ACE2 had significantly less weight loss, had less lung pathology recovered faster and when infected with Omicron compared to Delta or WT [10]. A Syrian hamster (M. auratus) model demonstrated poorer capability of Omicron to infect or spread in lung tissue compared to Delta or WT [11]. Additional studies on Syrian hamsters yielded similar results confirming that Omicron-infected animals show fewer clinical signs and have milder disease [12, 13].

Effect of vaccines: Current vaccines remain effective against severe disease including the Delta variant and [4]. Partially and fully vaccinated cases are highly protected against hospitalization associated with Alpha or Delta[14]. Greater than 80% protection against hospitalization was shown on analysis of data in Canada[15]. Omicron variant reduces effectiveness of the Pfizer-BioNTech's COVID-19 vaccine, but the vaccine still lowers the risk of hospital admission[16]. The Omicron might evade immunity from previous infections or vaccines and blunt the potency of neutralizing antibodies causing the existing vaccines to be less effective against the Omicron[3,17,5]. The study by Discovery Ltd, the largest private health insurer in South Africa, showed that Omicron reduced vaccine effectiveness against infection to 33% from 80% for Delta. The vaccine's efficacy of Pfizer-BioNTech against severe illness and hospitalization falls to 70% from 93%. Relative risk of contracting the Omicron variant in people infected with the Delta variant is 40%, while there is 60% chance of reinfection with Omicron in those infected with the Beta variant at the beginning of 2020[18]. Serum from 12 people who received the Pfizer-BioNTech vaccine was 40 times less potent against the Omicron than an earlier strain of SARS-CoV-2 as reported by Virologist Alex Sigal and colleagues, in Durban, South Africa[7]. Most breakthrough infections with the Omicron had less severe symptoms than previous variants[19]. The number of patients who needed oxygen support was less than previous waves[19]. As per the preliminary results released in South Africa, Germany, Sweden and the Pfizer-BioNTech collaboration the boosters should strengthen immunity to the Omicron[1]. People infected with SARS-CoV-2 previously prior to vaccination tended to have higher levels of neutralizing antibodies against the Omicron than vaccinated people with no prior infection as per Callaway[1]. The vaccines alone are not strong enough to control the pandemic[20]. The Cov-Boostexperiment with seven different vaccines as boosters following two dosesof either the AstraZeneca or Pfizer vaccines, including AstraZeneca, Curevac, Johnson & Johnson (Janssen), Moderna, Novavax, Pfizer, and Valnevdemonstrated thatall vaccinations (except
Curevac, which was discontinued) increased the immunological response; however, the number of antibodies varied greatly depending on the vaccine-combination [21–23]. Zhang and colleagues found that vaccinated sera were suppressed tenfoldmore by triply vaccinated sera than by doubly vaccinated sera while performing pseudo-virus assays [24]. Pajon and colleagues observed that neutralization antibody titres were 20 times higher with an mRNA booster dose than second dose of the vaccine [25]. A pre-print by researchers in Qatar have shown that protection afforded by prior infection dropped from 90% against reinfection with in Alpha, Beta, or Delta to 56% with Omicron [26].

Countrywide data on vaccine-effectiveness

United Kingdom

• In England, using a test-negative design, VE for symptomatic infection for Pfizer BioNTech–Comirnaty, Moderna mRNA-1273, and AstraZeneca-Vaxzevria dropped to under 20% by 20 weeks after vaccination (completion of the primary series). An mRNA booster dose restored VE to >60%, for all three vaccines following a primary two dose series with waning of VE by 10 weeks post-booster [27].

• In Scotland [28], a third/booster mRNA vaccine dose was associated with a 57% (95% CI 55, 60) reduction in symptomatic infection relative to ≥25 weeks post second dose (Pfizer BioNTech–Comirnaty, Moderna mRNA-1273, and AstraZeneca-Vaxzevria), as compared to a relative VE of 88% (95% CI 86, 89) for presumed Delta infection. [29].

The SIREN cohort study among health care workers found VE against any infection for the two mRNA vaccines and AstraZeneca-Vaxzevria combined was 60% among those with previous infection and 32% after two doses among those without previous infection and, increasing to 62% and 71%, respectively after a booster dose [30].

Denmark

• A nationwide cohort estimated a VE against infection of 55% (95% CI 24-74%) and 37% (95% CI 70-76%) for Pfizer BioNTech–Comirnaty and Moderna– mRNA 1273, respectively, in the month after vaccination, with evidence of waning VE to negligible VE by two to three months. A booster dose among those who received a primary series of Pfizer BioNTech–Comirnaty was found to restore the VE to 55% in the first month post-booster.

Canada

• In Ontario, there was negligible VE against infection among recipients of a primary series that included at least one mRNA vaccine. The VE increased to >40% after an mRNA booster [31].

• In a study in California, the VE was 30% (5%-49%) within three months of full vaccination for two doses of the Moderna mRNA-1273 vaccine and dropped to 0% by 6 months [32]. The VE increased to 64% (58-90%) within six weeks after a third dose among immunocompetent persons and was negligible in immunocompromised persons in South Africa.

• VE of the Pfizer BioNTech–Comirnaty vaccine was 50-70% against [33] hospitalization as reported by an insurance company study.

• As shown by The Sisonke trial of health care workers a second dose of the Janssen-Ad26.COV2.S vaccine had 85% (54-95) VE against hospitalization through two months post-vaccination [34].

United Kingdom

• Combined data from England/Wales for three vaccines (Pfizer BioNTech–Comirnaty, Moderna mRNA-1273, and AstraZeneca-Vaxzevria) showed that the VE against hospital admission fell to 44% (95% CI 30-54) by 25 weeks post-full vaccination, and increased to >80% through 10 weeks after booster vaccination [35].

Waning of vaccine-effectiveness

Large evidence of waning vaccine effectiveness overtime is provided by systematic review and meta-regression by Daniel R Feikin and colleagues [36] in The Lancet. The authors identified 18 studies matching their inclusion criteria, of which three were randomised controlled trials (RCTs). Meta regression studies suggested a decrease in protection against SARS-CoV-2 infection by 21±0% (95% CI 13±9-29±8; on the basis of evidence from six studies) over a 6-month period from full vaccination across all ages and for all investigated vaccine types (Pfizer–BioNTech Comirnaty, Moderna–mRNA 1273, Janssen–Ad26.COV2.S, and AstraZeneca-Vaxzevria). While vaccine effectiveness against severe disease decreased by 10±0% (95% CI 6±1–15±4; on the basis of evidence from five studies); however, vaccine effectiveness remained higher than 70% for 6 months against severe disease. The findings of Feikin and colleagues [36] relate to the effect of waning immunity after full vaccination, without booster doses. In addition, their findings are restricted to evidence before the emergence of omicron. [36] A report on population-based surveillance data from the UK, illustrated waning of protection against symptomatic disease after two-dose and three-dose vaccination schedules [37]. The protective effect against hospitalisation after omicron infection could be restored up to 90% with
an mRNA vaccine booster; a decrease to 75% 3–4 months after the booster was noted [37]. US data from a test negative study design support high vaccine effectiveness against omicron-related hospital admission after three doses (89%, 95% CI 84–92).[38] Preliminary data from Israel suggest an increased protective effect against infection (risk reduced by a factor of 2.0, 95% CI 2.0–2.10) and severe illness (risk reduced by a factor of 4.3, 2.4–7.6) 12 or more days after dose four when compared with people who received three doses.[39]; however the magnitude of effect vaccination has on transmission rates changed in the light of arising VOCs,[40] a vaccine-induced reduction of transmission was observed for omicron (but to a lesser extent), the findings underline that the continuing emergence of new VOCs will pose a threat to reduce the spread of SARS-CoV-2.[41]

II. CONCLUSION

The variant of concerns for SARS-COVID-19 will continue to pose a threat to existing vaccine programmes against SARS-COVID-19.

Conflict of interest: The author declares no conflict of interests

Acknowledgements: Nil

REFERENCES


Nature 2021 [PMID: 34845380 DOI: 10.1038/d41586-021-03564-6]


[17]. Graham F. Daily briefing: Omicron was already spreading in Europe. Nature 2021 [PMID: 34857944 DOI: 10.1038/d41586-021-03610-3]


[19]. Graham F. Daily briefing: Omicron was already spreading in Europe. Nature 2021 [PMID: 34857944 DOI: 10.1038/d41586-021-03610-3]


